[ulia Avram P

Django Day

Copenhagen
2020

Introduction

developer

whoami

curious as a cat

0
Packing and shipping

Roadmap

ﬁ@ Django, Docker and
Q‘J Kubernetes
WSGI N

First portable

solution to connect - N

/ \
an app to a server / /—\

—
D) a

Ready to go

'
M Onwards into the

future

/ New practices and
ﬁ possible futures

Best practices

So you're ready to
ship the produc’r
Road‘h’ip!! into the world..

| J
— _g ____________________ ’y ﬁ Checklist and some

ASGI nice to haves

The power of

async

Roadmap

—
D) a

Ready to go
So you're ready to
ship the produc’r
into the world..

g5

Kubernetes
WSGI e
First portable
solution to connect 77N

/ \
an app to a server 1 /—\

.
Packing and shipping
Django, Docker and

Best practices

ﬁ Checklist and some
ASGI nice to haves

The power of

async

Onwards into the
future

New practices and

possible futures

Ready to go

What happens when you deploy an
application?

Ready to go

(o0
< /> - | WH%SH!

your code a wild server

Jrechnico.lly Ready to go

any piece of
software or hardware
with a continuous
process
and a unique IP

(o0
< /> - WH%SH!

your code a wild server

WSG N

/>

your co&e

Jrechnicc:tlly

3 % Ready to go

sHypercorn
§ YP

any piece of
software or hardware
with a continuous
process
and a unique IP

WHOOSH!

?/5

a wild server

Ready to go

How does the code get
to the wild server?

1. You can install it directly ‘

1. You can install it directly ‘

2. Use a container for easy replica’cion (such as

Docker)

l. You can install it clirec’cly)

2. Use a container for easy replica’cion (such as

Docker)

3. Go serverless d

Ready to go

But before that, we need a server
for the server..

Ready to go

The Django documentation mentions two main

methods of deploying

o WSGI only supports synchronous code

o ASGI asynchronous-frien&ly

Roadmap

—
D) a

Ready to go
So you're ready to
ship the produc’r
into the world..

g5

Kubernetes
WSGI e
First portable
solution to connect 77N

/ \
an app to a server 1 /—\

.
Packing and shipping
Django, Docker and

Best practices

ﬁ Checklist and some
ASGI nice to haves

The power of

async

Onwards into the
future

New practices and

possible futures

[t was first specified in PEP 333 and then in PEP 333(3) -> with
an addition for Python 3

- /..“

[t contains a very detailed interface specification between

a server/gaieway and an applica’cion/framework

WSGI

X GET /cats HTTP 10

request

Web server

WSGI

Web server

<>

X GET /cats HTTP 10

request
[e0e]

B </>_

- [e0e |
=

— Application/
Server/Gateway framework

WSGI

invoke a callable object provic].ec]. _
lay the applica’cion o
/>~

Applico.’cion/

send IDCI.CI{ response

frameworl:

Server/ Ga’ceway

import os
from django.core.wsgi import get wsgi application
os.environ.setdefault('DJANGO SETTINGS MODULE', 'copenhagen.settings’)

application = get wsgi application()

import os
from django.core.wsgi import get wsgi application
os.environ.setdefault('DJANGO SETTINGS MODULE', 'copenhagen.settings’)

application = get wsgi application()

import os
from django.core.wsgi import get wsgi application
os.environ.setdefault('DJANGO SETTINGS MODULE', 'copenhagen.settings’)

application = get wsgi application()

WSGI

import os
from django.core.wsgi import get wsgi application

os.environ.setdefault('DJANGO SETTINGS MODULE', 'copenhagen.settings’)

applicatio get wsgi application

WSGI

def get wsgi application():

mar

The public interface to Django's WSGI support. Return a WSGI callable.

Avoids making django.core.handlers.WSGIHandler a public API, in case the
internal WSGI implementation changes or moves in the future.
django.setup(set prefix=False)

return WSGIHandler()

WSGI

def get wsgi application():

The public interface to Django's WSGI support. Return a WSGI callable.

Avoids making django.core.handlers.WSGIHandler a public API, in case the
internal WSGI implementation changes or moves in the future.
django.setup(set prefix=False)

return WSGIHandler()

WSGI

def get wsgi application():

The public interface to Django's WSGI support. Return a WSGI callable.

Avoids making django.core.handlers.WSGIHandler a public API, in case the
internal WSGI implementation changes or moves in the future.
django.setup(set prefix=False)

return WSGIHandler()

class WSGIHandler(base.BaseHandler): WSGI
request_class = WSGIRequest
def init (self, *args, **kwargs):

super(). init (*args, **kwargs)

self.load middleware()

def _call (self, environ, start_response):
set_script _prefix(get_script_name(environ))
signals.request_started.send(sender=self. class__, environ=environ)
request = self.request class(environ)
response = self.get response(request)

response._handler class = self. class

status = '%d %s' % (response.status_code, response.reason_phrase)
response_headers = [
*response.items(),
*(('Set-Cookie', c.output(header="")) for ¢ in response.cookies.values()),
]
start _response(status, response_headers)
if getattr(response, 'file to stream', None) is not None and environ.get('wsgi.file wrapper'):
If “wsgi.file _wrapper”™ is used the WSGI server does not call
.close on the response, but on the file wrapper. Patch it to use
response.close instead which takes care of closing all files.
response.file to_stream.close = response.close
response = environ['wsgi.file wrapper'](response.file to stream, response.block size)
return response

class WSGIHandler(base.BaseHandler): WSGI

request_class = WSGIRequest

def init (self, *args, **kwargs):
super(). init (*args, **kwargs)
self.load middleware()

def _call (self, environ, start_response):
set_script prefix(get_script_name(environ))
signals.request_started.send(sender=self. class_, environ=environ)
request = self.request class(environ)
response = self.get response(request)

response._handler class = self. class

status = '%d %s' % (response.status_code, response.reason_phrase)
response_headers = [
*response.items(),
*(('Set-Cookie', c.output(header="")) for ¢ in response.cookies.values()),
]
start response(status, response_headers)
if getattr(response, 'file to stream', None) is not None and environ.get('wsgi.file wrapper'):
If "wsgi.file wrapper”™ is used the WSGI server does not call
.close on the response, but on the file wrapper. Patch it to use
response.close instead which takes care of closing all files.
response.file to_stream.close = response.close
response = environ['wsgi.file wrapper'](response.file to stream, response.block size)
return response

L

K .

WSGI ARGUM
2 5
pd i“ iy

RS LR

environ

dic’[ionary object containing CGI—style environment variables

e & /N j (W=

start_response

callable accepting 2 positionql arguments and one op’rionql - status:
string, response_heaclers: list of quples containing (header_name,

value) and exc_info: used with errors

WSGI example

def simple app(environ, start response):
"""Simplest possible application object
status = '200 OK'
response_headers = [('Content-type', 'text/plain')]

start_response(status, response_ headers)
return ['Hello world!\n']

Source: h’c’cps://www.py’chon.org/d.ev/peps/pep-03 33/

WSGI

Limitations of WSGI

it's synchronous
no websockets
no awai’c/async

only works with the HTTP protocol

WSGI

Roadmap

—
D) a

Ready to go
So you're ready to
ship the produc’r
into the world..

g5

Kubernetes
WSGI e
First portable
solution to connect 77N

/ \
an app to a server 1 /—\

.
Packing and shipping
Django, Docker and

Best practices

ﬁ Checklist and some
ASGI nice to haves

The power of

async

Onwards into the
future

New practices and

possible futures

° "spiri’fuql successor to W SGI', compqtible with W SGI

[async/awai’c operation support

- /..“

® websockets

e HTTP and HTTP/2 protocols

ASGI

import os
from django.core.asgi import get asgi application
os.environ.setdefault('DJANGO_SETTINGS MODULE', 'copenhagen.settings')

application = get asgi application()

ASGI

import os L&(//

from django.core.asgi import get asgi application
os.environ.setdefault('DJANGO_SETTINGS MODULE', 'copenhagen.settings')

application = get asgi application()

ASGI

import os Lé(//

from django.core.asgi import get asgi application

os.environ.setdefault('DJANGO_SETTINGS MODULE', 'copenhagen.settings')

AN

application = get asgi application()

ASGI

def get asgi_application():

mwa

The public interface to Django's ASGI support. Return an ASGI 3 callable.

Avoids making django.core.handlers.ASGIHandler a public API, in case the
internal implementation changes or moves in the future.

django.setup(set prefix=False)

return ASGIHandler()

ASGI

def get asgi application():

mwa

The public interface to Django's ASGI support. Return an ASGI 3 callable.

Avoids making django.core.handlers.ASGIHandler a public API, in case the
internal implementation changes or moves in the future.

django.setup(set prefix=False)

return ASGIHandler()

ASGI

class ASGIHandler(base.BaseHandler):

Handler for ASGI requests."""

request_class = ASGIRequest

Size to chunk response bodies into for multiple response messages.
chunk_size = 2 ** 16

def init (self):
super().__init_ ()
self.load_middleware(is_async=True)

async def call (self, scope, receive, send):

won

Async entrypoint - parses the request and hands off to get response.

wnn

[..]

Send the response.
await self.send_response(response, send)

ASGI

class ASGIHandler(base.BaseHandler):

Handler for ASGI requests."""

request_class = ASGIRequest

Size to chunk response bodies into for multiple response messages.
chunk_size = 2 ** 16

def init (self):
super().__init_ ()
self.load _middleware(is_async=True)

async def call (self, scope, receive, send):

wnn

Async entrypoint - parses the request and hands off to get response.

wnn

[..]

Send the response.
await self.send response(response, send)

sg_ &8
CFee. ¥

3

ASGI ARGUMENTS

&
»

asg

YeeT
8- .Y,

scope
- a dic’tionqry with at least a key(\type') to specify the incoming pro’focol

- equivo.len’t of “environ' in WSGI

’ 1
\

receive

- awaitable callable that will yield an event dictionary

send

- awaitable callable that takes an event clic’fionary as a parameter and returns a
response once the message has been sent or the connection closed

"
1

"

i 'Rl 4

ASGI

class ASGIHandler(base.BaseHandler):

Handler for ASGI requests."""

request_class = ASGIRequest

Size to chunk response bodies into for multiple response messages.
chunk_size = 2 ** 16

def init (self):
super().__init_ ()
self.load _middleware(is_async=True)

async def call (self, scope, receive, send):

won

Async entrypoint - parses the request and hands off to get response.

wnn

[..]

Send the response.
await self.send_response(response, send)

ASGI

ASGI examples

async def app(scope, receive, send):
await event = receive()
await send({
"type": "http.response.start”,
"status": 200,
"headers": [
[b"content-type"”, b"text/plain”],
] scope = {
) "type": "http",
"method": "GET",

"scheme": "https",
ety & T
"headers": [
(b"accept™”, b"application/json")
1

ASGI

ASGI examples

async def app(scope, receive, send):
await event = receive()
await send({

"type": "http.response.start”, .
“status”: 200, follows the WSGI environ

"headers": [dictionary
[b"content-type"”, b"text/plain”],)

] scope = {
}) utypen: “http",
"method": "GET",

"scheme": "https",
ety & T
"headers": [
(b"accept™”, b"application/json")
1

ASGI

When can ASGI save the day?

Roadmap

—
D) a

Ready to go
So you're ready to
ship the produc’r
into the world..

g5

Kubernetes
WSGI e
First portable
solution to connect 77N

/ \
an app to a server 1 /—\

.
Packing and shipping
Django, Docker and

Best practices

ﬁ Checklist and some
ASGI nice to haves

The power of

async

Onwards into the
future

New practices and

possible futures

Docker

Web server

Django app

Docker

Web server

Django app

Docker

FROM python:3.8-alpine

COPY ./requirements.txt /requirements.txt

RUN apk add --update --no-cache --virtual .tmp gcc libc-dev linux-headers
RUN pip install -r /requirements.txt

RUN apk del .tmp

RUN mkdir /app
COPY ./copenhagen /app
WORKDIR /app

CMD ["python", "manage.py”, "runserver"”,"9.0.0.0:8000"]

Docker
Now let’s install the first server on top of our

Django application.

This permits us to have multi-threaded operations.

Docker container
[eee]

</>_

Cor——
- </>_

- <>

Djo.ngo app

Server/Gateway

Docker
Now let’s install the first server on top of our

Django application.

This permits us to have multi-threaded operations.

Docker container

Cor—
</>_

WSGI />

</>_

Djo.ngo app

Docker

FROM python:3.8-alpine

COPY ./requirements.txt /requirements.txt

RUN apk add --update --no-cache --virtual .tmp gcc libc-dev linux-headers
RUN pip install -r /requirements.txt

RUN apk del .tmp

RUN mkdir /app
COPY ./copenhagen /app
WORKDIR /app

CMD ["uwsgi", "--ini", "uwsgi.ini"]

Docker

FROM python:3.8-alpine

COPY ./requirements.txt /requirements.txt

RUN apk add --update --no-cache --virtual .tmp gcc libc-dev linux-headers
RUN pip install -r /requirements.txt

RUN apk del .tmp

RUN mkdir /app
COPY ./copenhagen /app
WORKDIR /app

CMD ["uwsgi", "--ini", "uwsgi.ini"] - socket

‘\\\ - module
- how many workers
- what to do on exit
- etc

Docker

Now usually comes the part where you add another server
on top. Or a gateway. Or a load balancer.

Docker container

the usual choice —
</>

D wsa 7=

</>_

Django app

version: '3.7'

services:
app:
build:
context:

nginx:
build: ./nginx
ports:

=- 1337 .80
depends_on:

- app

paying attention to

port]oinding can

save you a lot of

heqdaches

Docker

docker-compose to the
rescue

build a container for
the app accessed]oy a
WSGI/ASGI compliant

server (W sgi earlier)

you will need a
Dockerfile for it and a

build tai
ui a container file fOI parqme‘teIS; an].

for the reverse

don't forge’t to touch up
STATIC_URL and

STATIC_ROOT if

you're serving static

files

proxy and link it

to the app server

Docker

The next step after that is deploying to some container
orchestration tool such as Kubernetes.

® clus’rering different containers

’coge’ther
® scalable and configura]ole

® casier cleployrnen’r and

managemen’c

Docker

Kubernetes YML example

apiversion: vl
kind: Service
metadata:
name: polls
labels:
app: polls
spec:
type: LoadBalancer
ports:
- port: 80
targetPort: 8080
selector:

app: polls

Source: https://cloud.google.com/python/django/kubernetes-engine

R o
oq d m q p Packing and shipping
é? Django, Docker and
Kubel’ne es
WSGI !

First portable
solution to connect

an app to a server

—
D) a

.
Ready to go Y

Onwards into the
future

So you're ready to
ship the produc’r
into the world..

New practices and

L

possible futures

Best practices

| J
_________________________ ’y ﬁ Checklist and some

ASGI nice to haves

The power of

async

Best
practices

Some best practices | learned over time

(sometimes the hard way)

Some best practices | learned over time

(sometimes the hard way)

Best
practices

Use the checklist

The Django checklist is very useful
and it is recommended that you
use it when deploying. Add items
to the checklist that suit your
needs.

Some best practices | learned over time

(sometimes the hard way)

Monitor

Don't forge’t to log. And —
read those logs. Use the

tools available.

Best
practices

Use the checklist

The Django checklist is very useful
and it is recommended that you
use it when deploying. Add items
to the checklist that suit your
needs.

Some best practices | learned over time

(sometimes the hard way)

Be careful of sensitive data

Take care of your users. Use environment
variables where possi]ole. Act o.pprehensive
when it comes to security.

Monitor

Don't forge’t to log. And —
read those logs. Use the

tools available.

Best
practices

Use the checklist

The Django checklist is very useful
and it is recommended that you
use it when deploying. Add items
to the checklist that suit your
needs.

Some best practices | learned over time

(sometimes the hard way)

Be careful of sensitive data

Take care of your users. Use environment
variables where possi]ole. Act o.pprehensive
when it comes to security.

Monitor

Don't forge’t to log. And —
read those logs. Use the

tools available.

Best
practices

Keep Docker files clean

The order in which you run
commands matters. Don't give root
permissions to the server.

Use the checklist

The Django checklist is very useful
and it is recommended that you
use it when deploying. Add items
to the checklist that suit your
needs.

Some best practices | learned over time

(sometimes the hard way)

Best
practices

Keep Docker files clean

Be careful of sensitive data
The order in which you run

commands matters. Don't give root
Take care of your users. Use environment permissions to the server.

variables where possi]ole. Act o.pprehensive
when it comes to security.

Monitor Define what you want and stick to it

Bl T o oz Awd | You are in control of which tools or patterns you're going to

read those logs. Use the

tools available.

use. Mix and match. If something doesn't work, change it.

I | Ll

Use the checklist

The Django checklist is very useful
and it is recommended that you
use it when deploying. Add items
to the checklist that suit your
needs.

Roadmap

—
J a

Ready to go
So you're ready to
ship the produc’r
into the world..

g5
WSGI

Django, Docker and

Kubernetes

_

First portable

solution to connect

an app to a server /

&

ASGI
The power of

async

C
Packing and shipping

Best practices
Checklist and some

nice to haves

Whoooo!

70
NT
Onwards into the
future

New practices and
possible futures

Thanks

Does anyone have any ques’cions?

¥ iulyaav

L]
IN iulic-avram

O iulyaav

Thanks

Credits

- slide theme by Slidesgo
- icons by Flaticon
- pictures by Unsplash

